Source code for pygod.detector.anomalous

# -*- coding: utf-8 -*-
""" A Joint Modeling Approach for Anomaly Detection on
    Attributed Networks
"""
# Author: Kay Liu <zliu234@uic.edu>
# License: BSD 2 clause

import time
import warnings

import torch
from torch import nn
from torch_geometric.utils import to_dense_adj

from . import Detector
from ..utils import validate_device, logger


[docs] class ANOMALOUS(Detector): """ A Joint Modeling Approach for Anomaly Detection on Attributed Networks ANOMALOUS is an anomaly detector with CUR decomposition and residual analysis. .. note:: This detector is transductive only. Using ``predict`` with unseen data will train the detector from scratch. See :cite:`peng2018anomalous` for details. Parameters ---------- gamma : float, optional Weight of node feature w.r.t. structure. Default: ``1``. weight_decay : float, optional Weight decay (L2 penalty). Default: ``0.``. lr : float, optional Learning rate. Default: ``0.004``. epoch : int, optional Maximum number of training epoch. Default: ``100``. gpu : int GPU Index, -1 for using CPU. Default: ``-1``. contamination : float, optional Valid in (0., 0.5). The proportion of outliers in the data set. Used when fitting to define the threshold on the decision function. Default: ``0.1``. verbose : int, optional Verbosity mode. Range in [0, 3]. Larger value for printing out more log information. Default: ``0``. """ def __init__(self, gamma=1., weight_decay=0., lr=0.004, epoch=100, gpu=-1, contamination=0.1, verbose=0): super(ANOMALOUS, self).__init__(contamination=contamination, verbose=verbose) # model param self.gamma = gamma self.weight_decay = weight_decay # training param self.lr = lr self.epoch = epoch self.device = validate_device(gpu) self.model = None
[docs] def fit(self, data, label=None): data.s = to_dense_adj(data.edge_index)[0] x, s, l, w_init, r_init = self.process_graph(data) self.model = ANOMALOUSBase(w_init, r_init) optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) for epoch in range(self.epoch): start_time = time.time() x_, r = self.model(x) loss = self._loss(x, x_, r, l) optimizer.zero_grad() loss.backward() optimizer.step() decision_score = torch.sum(torch.pow(r, 2), dim=1).detach() \ .cpu() logger(epoch=epoch, loss=loss.item(), score=self.decision_score_, target=label, time=time.time() - start_time, verbose=self.verbose, train=True) self.decision_score_ = decision_score self._process_decision_score() return self
def decision_function(self, data, label=None): if data is not None: warnings.warn("This detector is transductive only. " "Training from scratch with the input data.") self.fit(data, label) return self.decision_score_ def process_graph(self, data): x = data.x.to(self.device) s = data.s.to(self.device) s = torch.max(s, s.T) laplacian = torch.diag(torch.sum(s, dim=1)) - s w_init = torch.randn_like(x.T).to(self.device) r_init = torch.inverse((1 + self.weight_decay) * torch.eye(x.shape[0]).to(self.device) + self.gamma * laplacian) @ x return x, s, laplacian, w_init, r_init def _loss(self, x, x_, r, l): return torch.norm(x - x_ - r, 2) + \ self.gamma * torch.trace(r.T @ l @ r)
class ANOMALOUSBase(nn.Module): def __init__(self, w, r): super(ANOMALOUSBase, self).__init__() self.w = nn.Parameter(w) self.r = nn.Parameter(r) def forward(self, x): return x @ self.w @ x, self.r